Bifocal Fresnel lens based on the polarization-sensitive metasurface

نویسندگان

  • Hen Markovich
  • Dmitrii Filonov
  • Ivan Shishkin
  • Pavel Ginzburg
چکیده

Thin structured surfaces allow flexible control over propagation of electromagnetic waves. Focusing and polarization state analysis are among functions, required for effective manipulation of radiation. Here a polarization sensitive Fresnel zone plate lens is proposed and experimentally demonstrated for GHz spectral range. Two spatially separated focal spots for orthogonal polarizations are obtained by designing metasurface pattern, made of overlapping tightly packed cross and rod shaped antennas with a strong polarization selectivity. Optimized subwavelength pattern allows multiplexing two different lenses with low polarization crosstalk on the same substrate and provides a control over focal spots of the lens only by changing of the polarization state of the incident wave. More than a wavelength separation between the focal spots was demonstrated for a broad spectral range, covering half a decade in frequency. The proposed concept could be straightforwardly extended for THz and visible spectra, where polarization-sensitive elements utilize localized plasmon resonance phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...

متن کامل

Multifunctional metasurface lens for imaging and Fourier transform

A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single...

متن کامل

In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.

We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization...

متن کامل

Predicting and assessing visual performance with multizone bifocal contact lenses.

PURPOSE To investigate how bifocal contact lenses, when combined with the aberrations of the eye, will affect visual performance. Also, to investigate the relationship between the patient's predicted and actual visual benefit with bifocal contact lenses. METHODS The monochromatic aberrations of 16 subjects were measured and used to simulate visual quality with three bifocal contact lens desig...

متن کامل

Polarization controllable Fresnel lens using dye-doped liquid crystals.

A scattering-free, polarization controllable Fresnel zone plate lens is demonstrated using a photo-induced alignment of the dye-doped liquid crystal film. This photo-aligned liquid crystal zone plate provides orthogonal polarization states for odd and even zones. The different focus orders can be separated because of their different polarization states. The fabrication process is relatively sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017